Total coloring of corona product of two graphs

نویسندگان

  • S. Mohan
  • J. Geetha
  • K. Somasundaram
چکیده

A total coloring of a graph is an assignment of colors to all the elements (vertices and edges) of the graph such that no two adjacent or incident elements receive the same color. In this paper, we prove the tight bound of the Behzad and Vizing conjecture on total coloring for the corona product of two graphs G and H , when H is a cycle, a complete graph or a bipartite graph.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total vertex irregularity strength of corona product of some graphs

A vertex irregular total k-labeling of a graph G with vertex set V and edge set E is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by tvs(G)is the minimum value of the largest label k over all such irregular assignment. In this paper, we study the to...

متن کامل

Equitable colorings of corona multiproducts of graphs

A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and denoted χ=(G). It is known that this problem is NP-hard in general case and remains so for corona graphs. In [12] Lin i Chan...

متن کامل

Equitable total coloring of corona of cubic graphs

The minimum number of total independent sets of V ∪ E of graph G(V,E) is called the total chromatic number of G, denoted by χ′′(G). If difference of cardinalities of any two total independent sets is at most one, then the minimum number of total independent partition sets of V ∪E is called the equitable total chromatic number, and denoted by χ′′ =(G). In this paper we consider equitable total c...

متن کامل

Computing PI and Hyper–Wiener Indices of Corona Product of some Graphs

Let G and H be two graphs. The corona product G o H is obtained by taking one copy of G and |V(G)| copies of H; and by joining each vertex of the i-th copy of H to the i-th vertex of G, i = 1, 2, …, |V(G)|. In this paper, we compute PI and hyper–Wiener indices of the corona product of graphs.

متن کامل

Detour Monophonic Graphoidal Covering Number of Corona Product Graph of Some Standard Graphs with the Wheel

A chord of a path $P$ is an edge joining two non-adjacent vertices of $P$. A path  $P$ is called a monophonic path if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A  detour monophonic graphoidal cover of a graph $G$ is a collection $psi_{dm}$ of detour monophonic paths in $G$ such that every vertex of $G$ is an internal vertex  of at most on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2017